

Product Guide

Australia & New Zealand

www.vulcan.co

2023

Contents

ALLOY HEAT TREATED

4140 High Tensile Steel5
4145H Modified High Tensile Steel
4340 High Tensile Steel7
EN26 High Tensile Steel
BRIGHT STEELS
M1020 Bright Carbon Steel Bar9
M1030 Bright Carbon Steel Bar10
M1045 Bright Carbon Steel Bar11
S12L14 Bright Carbon Steel Bar12
1214 Bright Carbon Steel Bar13
BRONZE (AUSTRALIA ONLY)
954 Aluminium Bronze 14
LG-2 Bronze 15
PB-1 Phosphor Bronze 16
CARBON STEELS
1020 Carbon Steel Bar17
1045 Medium Tensile Carbon Steel Bar
CASE HARDENING (AUSTRALIA ONLY)
1.6587 Case Hardening Steel 19
8620 Case Hardening Steel 20
EN36A Case Hardening Steel 21
CHROME BAR (AUSTRALIA ONLY)
1045 Hard Chrome Plated Bar 22
1045 Induction Hardened Chrome Plated Bar
4140 Hard Chrome Plated Bar
HOLLOW BAR
20MnV6 Hollow Bar
316/L Stainless Steel Hollow Bar
STAINLESS STEEL
303 Stainless Steel 27
304 Stainless Steel
316/316L Stainless Steel 29
431 Martensitic Stainless Steel
CHARTS AND TABLES
Hardness Conversion Chart
Tolerance Tables

VULCAN. Hollow Bar Specifications

www.vulcan.co

Produced to "Euro Norm" EN10294-1 Specifications (Except where items shaded grey)

	Sizes		Weight		med Sizes		Sizes		Weight		Turned Sizes		Sizes		Weight	Clean Tur Centrin	ned Sizes g on OD
OD	ID	WT	Approx.	Centrin OD	g on OD ID	OD	ID	WT	Approx.	Cen OD	Itring on OD	OD	ID	WT	Approx.	Centrin OD	g on OD ID
mm	mm	mm	kg/m	mm	mm	mm	mm	mm	kg/m	mm	mm	mm	mm	mm	kg/m	mm	mm
30	15 20	7.5 5.0	5.5 4.4	30 30	15 20		70 75	27.5 25.0	73.0 70.0	125 125	70 75		100 110	50.0 45.0	202.6 189.0	200 200	100 110
	20	7.5	6.5	30	20		75 80	25.0 22.5	70.0 65.2	125	75 80		110	45.0 42.5	189.0	200	110
35	25	5.0	5.1	35	25	125	90	17.5	54.5	125	90		120	40.0	174.9	200	120
	20	10.0	8.8	40	20		95	15.0	48.6	125	95		125	37.5	172.4	200	125
40	25 30	7.5 5.0	7.5 5.9	40 40	25 30		100 55	12.5 37.5	42.3 93.8	125 130	100	- 200	140 140	30.0 30.0	147.3 129.6	200	140
45	30	7.5	8.9	45	30		65	32.5	88.0	130	65		145	27.5	134.9	200	145
	25	12.5	13.2	50	25		70	30.0	83.0	130	70		150	25.0	120.9	200	150
50	30 35	10.0 7.5	11.9 10.5	50 50	30 35		75 80	27.5 25.0	78.5 73.8	130 130	75 80		160 165	20.0 17.5	105.2 95.2	200 200	160 165
	30	12.5	16.4	55	30	130	85	22.5	68.6	130	85		175	12.5	80.4	200	175
55	35	10.0	14.1	55	35		90	20.0	64.3	130	90		130	40.0	197.2	210	130
	40	7.5	12.0	55 60	40		95 100	17.5 15.0	57.2 51.0	130 130	95 100	210	150 155	30.0 27.5	161.6 143.3	210 210	150 155
60	40	12.5	15.0	60	40		105	12.5	44.5	130	105	2.0	160	25.0	143.3	210	160
	45	7.5	12.5	60	45		110	10.0	37.0	130	110		170	20.0	120.2	210	170
	35 40	15.0 12.5	21.4 19.2	65 65	35 40		75 80	32.5 30.0	96.3 91.6	140 140	75 80		125 135	47.5 42.5	229.7 213.6	220 220	125 135
65	40	12.5	19.2	65	40		85	27.5	86.4	140	85		135	42.5	186.5	220	140
	50	7.5	13.7	65	50	140	90	25.0	80.9	140	90	220	150	35.0	177.1	220	150
	35 40	17.5 15.0	26.0 23.6	70 70	35 40		100 105	20.0 17.5	68.9 62.4	140 140	100 105		160 180	30.0 20.0	166.4 122.8	220 220	160
70	40 45	15.0 12.5	23.6 21.0	70 70	40 45		105	17.5 15.0	62.4 55.6	140 140	105 110		180	45.0	241.5	220	180
	50	10.0	19.8	70	50		115	12.5	48.3	140	115		145	42.5	224.1	230	145
	55	7.5	14.9	70	55		75	37.5	113.5	150	75		160	35.0	196.2	230	160
	40 45	17.5 15.0	28.4 25.8	75 75	40 45		80 85	35.0 32.5	110.7 105.7	150 150	80 85	230	170 170	30.0 30.0	182.5 152.4	230	170
75	50	12.5	22.9	75	50		95	27.5	94.5	150	95		180	25.0	160.0	230	180
	55	10.0	19.6	75	55		100	25.0	88.3	150	100		190	20.0	128.6	230	190
	60 40	7.5	16.2 33.6	75	60 40	150	105	22.5 20.0	81.8 75.1	150 150	105 110	237	135 140	51.0	238.6 299.1	* 250	* 140
	40	17.5	31.0	80	40		115	17.5	67.8	150	115		140	50.0	281.5	250	150
80	50	15.0	28.1	80	50		120	15.0	61.7	150	120		150	50.0	254.0	•	•
	55 60	12.5 10.0	24.9 21.2	80 80	55 60		125 130	12.5 10.0	52.5 44.6	150 150	125 130	250	160 170	45.0 40.0	262.0 241.0	250 250	160 170
	45	20.0	36.5	85	45		85	37.5	122.1	160	85		180	35.0	191.2	250	*
	50	17.5	33.5	85	50		90	35.0	118.4	160	90		190	30.0	194.9	250	190
85	55	15.0	30.3	85	55	100	95	32.5	110.9	160	95	05.1	200	25.0	169.7	250	200
	60 65	12.5 10.0	26.7 22.7	85 85	60 65	160	105 115	27.5 22.5	102.5 88.6	160 160	105 115	254	180 173	37.0	204.0 283.2	•	•
	70	7.5	18.7	85	70		125	17.5	73.3	160	125		183	45.0	260.6	•	•
	40	25.0	43.4	90	40		135	12.5	56.5	160	135	273	193	40.0	236.8	•	•
	45 50	22.5 20.0	40.9 39.3	90 90	45 50		80 95	45.0 37.5	148.2 136.9	170 170	80 95		203 213	35.0 30.0	211.6 185.2	:	:
90	55	20.0	39.3	90	55		95	37.5	124.5	170	95		213	25.0	185.2		
	60	15.0	32.5	90	60		110	30.0	117.7	170	110	292	165	63.5	368.6	•	•
	65 70	12.5 10.0	28.6 24.4	90 90	65 70	170	120 125	25.0 22.5	103.2 95.3	170 170	120 125		198 208	50.0 45.0	315.0 289.2	•	:
	45	25.0	50.5	90	45		125	22.5	95.3	170	125		208	45.0	269.2		
	50	22.5	45.5	95	50		135	17.5	78.7	170	135	298	226	36.0	239.6		•
	55	20.0	42.3	95	55		140	15.0	70.0	170	140		238	30.0	204.2	•	
95	60 65	17.5 15.0	38.8 34.8	95 95	60 65		145 70	12.5	60.8	170	145		248 258	25.0 20.0	173.4 141.2		
	70	12.5	30.7	95	70		85	47.5	165.4	180	85		224	50.0	348.0	•	•
	75	10.0	26.0	95	75		90	45.0	160.2	180	90	324	244	40.0	288.6	•	
	45 50	27.5 25.0	53.2 51.9	100 100	45 50		100	40.0 37.5	150.9 147.7	180 180	100 105		264 274	30.0 25.0	224.0 189.7	:	:
	55	22.5	48.9	100	55	100	115	32.5	134.0	180	115	340	214	62.5	440.6		•
100	60	20.0	45.2	100	60	180	120	30.0	126.6	180	120		236	60.0	451.1	·	·
	65 70	17.5	41.3	100	65		125	27.5	116.0	180 180	125 130		256	50.0	388.6	•	
	70 75	15.0 12.5	37.1 32.5	100 100	70 75		130 140	25.0 20.0	110.8 93.4	180 180	130 140	356	276 286	40.0 35.0	321.1 285.4		
	80	10.0	27.6	100	80		145	17.5	84.3	180	145		296	30.0	248.4	•	•
	50	27.5	57.0	105	50		150	15.0	74.8	180	150		306	25.0	210.2	•	•
	55 60	25.0 22.5	54.5 50.2	105 105	55 60		100	45.0 42.5	173.5 167.1	190 190	100 105	368	258 268	55.0 50.0	437.3 403.9		
105	65	20.0	48.2	105	65		110	40.0	160.6	190	110		288	40.0	333.3	•	•
105	70	17.5	44.0	105	70		115	37.5	153.6	190	115	380	280	50.0	415.0	•	•
	75 80	15.0 12.5	38.0 34.5	105 105	75 80	190	120 135	35.0 27.5	146.3 122.1	190 190	120 135		286 306	60.0 50.0	527.3 452.2	:	:
	85	12.5	34.5	105	85		140	27.5	122.1	190	135	406	306	40.0	452.2 371.9		
	60	25.0	59.2	110	60		150	20.0	99.4	190	150		346	30.0	286.5	•	•
	70	20.0	51.1	110	70		160	15.0	79.5	190	160		356	25.0	242.0	•	•
110	75 80	17.5 15.0	46.6 41.7	110 110	75 80		165	12.5	68.8	190	165	419	299 309	60.0 55.0	547.2 508.5		
	85	12.5	36.4	110	85			Typical Che	emical Composition				317	70.0	688.1	•	•
	90	10.0	30.9	110	90	Steel Grade		i% Mn%	P% S%	_	Ni % V %		327	65.0	647.2	•	•
	65 70	25.0	62.7	115	65	Ovako 280T	0.20 0	30- 1.45- .45 1.60	0.025 0.020- Max 0.035	0.20- 0.30	0.20 0.08- Max 0.12	457	337	60.0	605.1	•	•
	70 75	22.5 20.0	58.5 53.0	115 115	70 75	20MnV6 (E470)	0.16- 0. 0.22 0	10- 1.30- .50 1.70	0.03 Max 0.015- 0.050	· -	- 0.08- 0.15		347 357	55.0 50.0	561.6 516.9		
115	80	17.5	49.2	115	80	E355J2 (Normalised)		.55 1.60 Max Max	0.03 Max 0.015- 0.050	_	0.30 0.10 Max Max		377	40.0	423.7		•
	85	15.0	43.0	115	85	,	· ···· / ··			· ·			368	70.0	778.8	•	•
	90 65	12.5	38.4	115	90 65				chanical Properties			508	388 408	60.0 50.0	682.8 581.7	:	
	70	27.5	66.4	120	70	Steel	Tensile Strength Up to 16mm		Yield S Up to 16mm to	trength (MPa M Over Elo	fin) ongation Impact	540	408	67.0	797.2	*	•
120	80	20.0	57.1	120	80	Grade	16mm to Wall 25mm	25mm to	16mm 25mm Wall wall	25mm to 50mm		559	399	80.0	973.3	*	*
	90	15.0	46.4	120	90	Oralia	wall	wall		wall	2004 07.115	610	470	70.0	950.8	•	•
	95	12.5	40.4	120	95	Ovako 280T	670 670	640	500 500		20% 27J Min		490	60.0	838.2	•	•
			94-1 are guarantee h of 200mm or 3 tir			20MnV6 (E470)	650 620	550	470 460	430	17% -						
Items shaded in	n grey are nomina	I sizes, ordered	I to DIN, ISO or AS			E355J2 (Normalised)	490 490	470	355 345	335	20% 27J Min						
guarantee of cle	ean up. Sizes sho	own are indicati	ive only.			<u> </u>	or a Test Certific	ate for sizes with	h Wall Thickness Gre	ater than 50mm	n	20MnV6	DIN or ISO	S355J2	Ovako 280T	Some size	es are available in
			ck carried at Vulcar ease contact our sa									Euronorm EN10294-1	standard	Euronorm EN10294-1	Euronorm EN10294-1	316L, :	2205 stainless 0 hardened and
other sizes are al	lso available ex mi	Il production. The	e weight values inc	dicated are appro	kimate only.							LIN10294-1		LINT0294-1	LIN10294-1		o nardened and bered grades

 Melbourne
 Sydney

 96-106 Bangholme Road, Dandenong South VIC 375
 23-47 Percival Road, Smithilidi NSW 2164

 P0 5929 966
 P0 2926 2552

 F0 3970 6400
 F0 2926 2552

 F0 3970 6400
 F0 2926 2552

 Eengineering melbourne@hulcanco stainless.melbourne@hulcanco
 stainless.me@pulcanco

 Brisbane
 A

 2/8 Titanium Court,
 1

 Crestmead QLD 4132
 P

 P 07 3469 5353
 P

 F 07 3489 5353
 P

 E engineering,brisbane@vulcan.co
 E

Adelaide 1 Williams Circuit, Pooraka SA 5095 P 08 8359 5099 F 08 8359 5199 E engineering.adelaide@vulcan.co stainless.adelaide@vulcan.co
 Mackay

 20 John Vella Drive,

 Paget QLD 4740

 P 07 4952 5000

 F 07 4952 5880

 E engineering.mackay@vulcan.co

Albury 1 Phoenix Place, Albury NSW 2640 P 02 6041 4999 F 02 6041 4099 E engineering.albury@vulcan.co stainless.albury@vulcan.co Perth 11 Marriot Road, Jandakot WA 6164 P 08 9412 5600 F 08 9412 5650 E engineering perth@vulcan.co stainless.perth@vulcan.co Newcastle 12 Pippita Close, Beresfield NSW 2322 P 02 4928 7700 F 02 4961 0499 E engineering.newcastle@vulcan.

Townsville 13 Whitehouse Street, Garbutt QLD 4814 P 07 4722 4100 F 07 4722 4105 E stainless.townsville@vulcan

Vulcan Steel has provided this information for reference purposes only from various supplier literature. We can offer no guarantees on the accuracy of the information provided

CAN. Metal Products Colour Codes

www.vulcan.co

Bright + Carbon Steels	Stainless Steels
1020 AISI C1020 DIN 1.0402 1.1152 Low strength and high ductility. Typical UTS 410-790 MPa. Excellent weldability. Good machinability. Can be carburised. End use: Lightly stressed parts.	Austenitic Crades 303 Free machining grade with excellent machinability. Corresion resistance lowest of all Austenitic
1030 AISI C1030 1.0528 1.1178 Low/medium strength and good ductility. Typical UTS 500-850 MPa Good machinabili weidability. Low hardenability. Used: Light/medium stressed parts.	AISI 304 General purpose grade with improved machinability. Corrosion resistance higher than 303, lower than 316.
1045 AISI C1045 DIN 1.0503 1.1191 Medium strength and good ductility. Typical UTS 600-950 MPa Good machinability. Ca welding. Can be flame/ind. hardened. Used: Medium stressed parts.	AISI 304L General purpose grade with improved machinability. Corrosion resistance higher than 303, lower than 316.
S1214 AISI 1213/1215 DIN 1.0715 Low strength and moderate ductility. Typical UTS 370-760 MPa Excellent machinability welding. Can be carburised. Used: Very lightly stressed parts.	y, Care needed UNS \$30303 304L (low carbon) has excellent weblability. Corrosion resistance higher than 321 or 304. Alsi 316 General purpose grade with improved machinability. Corrosion resistance higher than 321 or 304.
S12L14 AISI 12.14 DIN 1.0718 Premium grade of free cutting steel. Typical UTS 370-760 MPa Suitable for case hards automotive components.	enling used for UNIS S31600 Headiny webeel, Used: DUMESUR, daily adjuications.
Hollow Bar	UNS \$31603 310L (low carbon) has excellent weilability. Used: Marine and Chemical Industries.
ISO 20MinV6 DIN 1.5217 A low carbon-manganese-vanadium steel with typical UTS 500-750 MPa Excellent machi weldability. Can be carburised or nitrided. Used: Medium stressed parts. Supplied in ISO/	Size UNS \$32100 Excellent weldability, resists scaling up to 800°C plus. Used when welding or high temperature involved. ASTM sizing. ASSI 053000 High temperature allow possession high sterndh and resistance to sigma phase formation. Resistant to
C EN DIN 1.5217 A low carbon-manganese-vanadium steel produced to the Euro Norm size range of EN 20Mv6	V 10284-12005 UNIS S30815 temperatures up to 1150°C. Used: furnace parts, radiant shields, fluidised beds.
4140 AISI 4140 A chrome moly steel with typical UTS 850-1100 MPa Can be flame/ind. hardened or m Good machinability. Used: Medium/highly stressed parts.	
Case Hardening Steels	All's 430 Wild's 430 Moderate to good corrosion resistance, magnetic and non-hardenable. Low weldability. Used: Interior architectural components, stove and automotive trim, dishwashers and whitegoods.
AISI 8620 General purpose grade with good machinability/weldability. Carb. & H.T.: Case hardness DIN 1.6523 Core: Good strength and toughness. End use: Lightly stressed parts.	ss typical RC 62. SCR12 ALSI 5CR12 Moderate to good corrosion resistance, magnetic and non-transferable. Fair to good weldability. Used: Mildly corrosive environments where better life cycle cost over carbon or galvanised steel is desired.
DIN AS 1444 X4317 1.6587 17CrNIMo6/18CrNIMo7-6 Core: High strength and good toughness. End use: Moderate/highly stressed parts.	Martensitic Grades
EN36A AISI E3310 9310 DIN 1.5752 High strength and excellent toughness. End use: Highly stressed parts.	
EN39B AS 1444 X9315 DIN 1.6723 SAE 9315 Case hardened typical RC 62.Core: Very high core strength and toughness.	420 UNS 542000 Good machinability. Welding not recommended. Used in pump and valve parts, etc.
High Tensile Steels	431 UNS \$43100 Good machinability. Welding not recommended. Used in high tensile parts.
4140 AISI 4140 DIN 1.7225 High strength and good toughness with typical UTS 850-1000 MPa Can be flame/ind. nitrided. Good machinability. End use: Medium to highly stressed parts.	
4340 AISI 4340 High strength and good toughness with typical UTS 930-1080 MPa Can be flame/ind. nitrided. Good machinability. End use: Highly stressed parts.	hardened or 630 Hardened Hardened 630 Hardened 630 Hardenide Comparison of the standard of the
EN26 AS X9940 DIN 1.5745 Can be fiame/ind. hardened or nitrided. Good machinability. Used: Severely stressed p	parts.
4145H SAE J1268 ASTM A304 DIN 1.7225 1% Chrome Molybdenum high tensile steel to API7 specification for oilfield application	
Channe Der	205 AISI 2205 Ferritic/Austentic grade with high Y.S. Typical S70 MPa. Comoson resistance higher than 316/L316. Reasonable machinability. Good weldability. Used where high strength/corrosion resistance required.
Chrome Bar AISI C1045 A medium carbon steel hard chrome plated to a thickness of 0.025/0.050mm and sur	AISI 2507 Super August Aug
K1045 DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, e	frace hardness of UNS \$32750 chloride and acid environments. Good weidability. Used: Heat exchangers, reactors, pipework.
	face hardness of stb. If RC 55-65 Cast Iron
Klubs DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, e Klubs AlSI C1045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o	face hardness of stc. UNS 532750 Chichoe and acid environments. Good webdoning, Usen theat exchanges, reactors, pipework. fRC 55-65 Cast Iron 6,15450/ EN-6,15450 6,00 ASTM A536 65-45-12 A spheroidal graphite cast iron with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gears, moulds, etc.
K1045 DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, e K1045 AlSI C1045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o beforechrome plating (as above). Used: Parts resistant to surface impact. Line AlSI 4140 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above).	face hardness of set. UNS 532790 Chiche and scol environments. Good weidebuilty. Usen theat excellent agents, reactors, pipework. face hardness of set. Cast Iron f RC 55-65 GJS450/ EN-GJS450 A spheroidal graphite cast rom with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gears, moulds, etc. B-GJJ300 B-H-GJJ300 B-GJ1200 B-H-GJ300 B-GJ1200 B-H-GJ300
K1045 DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et K1045 AISI C1045 Amedium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AISI 4140 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further imherdness.	face hardness of itc. UNS 532790 Cincrole and exod environments. Good wendoully, User Feat Exclusing ets, Teacturs, pipework. I RC 55-65 Cast Iron 6.JS450/ EN-6JL300 A spheroidal graphite cast iron with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gears, moulds, etc. prove surface GJL300 EN-6JL300 High strength grade with good machinability. Carb. & H.T.: Case hardness typical RC 62. Core: High strength and good toughness. Used: Moderate/highly stressed parts.
K1045 DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, e K1045 AISI C1045 IH Amedium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AISI 4140 DIN 1.7225 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further implication of Induction Hardenin	Inface hardness of itc. Cast Iron IRC 55-65 Sold AstM As56 65-45-12 A spheroidal graphite cast iron with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gears, moulds, etc. prove surface GJIS50/ EN-GJI.300 High strength grade with good machinability. Carb. & H.T.: Case hardness typical RC 62. Core: High strength and good toughness. Used: Moderate/highly stressed parts. b BS 1452 300 A leaded gummetal bronze with typical UTS 270 MPa Excellent machinability. Good corrosion resistance. Used: Bushings, bearings, valve/pump bodies. kd punches; LG2 As C83800 A leaded gummetal bronze with typical UTS 270 MPa Excellent machinability. Good corrosion
Klubs DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et K1045 AlSi C1045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o H DIN 1.6503 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o H DIN 1.6503 1.1191 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). H A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). H DIN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. Tool Steels AISI 02 12% Chrome steel, high resistance against abrasive wear, dimensionally stable, for co	International and source
Kluss DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et K1045 AlSi 01045 DIN 1.6503 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AlSi 4140 DIN 1.7225 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Cood machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 High Tessile Chrome Plated bar with the addition of Induction Hardening to further im hardness. TOOI SteeIs 02 AlSi 02 DIN 1.229 12% Chrome steel, high were resistance against abrasive wear, dimensionally stable, for co dies, shear blacks, deep drawing, thread rolling des, fine cutting tools. 03 AlSi 03 DIN 1.209 12% Chrome steel, high were resistance, highly stress cutting and punching tools for t profile rolls, paper knives, drawing and deep drawing dies. 03 AlSi 03 DIN 1.209 12% Chrome steel, high were steating on dawing dies. 03 AlSi 03 DIN 1.209 12% Chrome steel, high were steating on dawing dies.	International of the particle of environments Good wendounly Used Head Exclusing ets reactors, pipework. Int C 55-65
Kluss DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et K1045 AlSI C1045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o H DIN 1.6503 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o H DIN 1.6503 1.1191 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). H A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Good machinability. End use: Highly stressed hydraulic parts, etc. H DIN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. Tool Steels D2 AISI D2 DIN 1.2379 D3 AISI D3 DIN 1.2800	International of the additional of the additis additional of the additional of the additi
Kluss DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et K1045 AlSI 01045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o M100 DIN 1.6003 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o M100 DIN 1.6003 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o M140 DIN 1.7225 Achrome moly steel with tylical UTS 850-1000 MPa Chrome plated (as above). M140 DIN 1.7225 Good machinability. End use: Highly stressed hydraulic parts, etc. M140 DIN 1.7225 Hgh Tensile Chrome Plated bar with the addition of Induction Hardening to further im Hgh Tensile Chrome Steel, high resistance against shrasive wear, dimensionally stable, for co DIN 1.7227 DIN 1.2279 J2% Chrome steel, high vear resistance, highly stress cutting and punching tools for t DIN 1.2280 12% Chrome steel, high vear resistance, highly stress cutting and punching tools for t DIN 1.2281 High strength hot work steel such as actruice and forging dies, pressure casting tools for the particle rolls, paper knives, drawing and deep drawing dies. DIN 1.2282 High strength hot work steel such as actruice and forging dies, pressure casting tools knives, kools for the plastic industy, also avaitable in EFS and ESR. <	International of the internatinter interevent of the international of the internati
Kides DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et beforechrome plating (as above). Used: Parts resistant to surface impact. Kides AlSi C1045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AlSi 4140 A chrome moly steel with hydra UTS 850-1000 MPa Chrome plated (as above). 4140 DIN 1.7225 Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. 500 D2 AlSI D2 High Tensile Chrome Steel, high resistance against abrasive wear, dimensionally stable, for co dies, shear blades, deep drawing, thread rolling des, fine auting tools. 501 D3 AlSI D3 12% Chrome steel, high resistance, highly stress cutting and punching tools for to profile rolls, paper knives, drawing and deep drawing dies. 503 DIN 1.2239 12% Chrome steel, high wear esistance highly stress cutting and punching tools for the rolls to high wear tesistance, highly stress cutting and punching tools for thing bits, tools for the plastic industy, also available in EFS and ESR. 603 DIN 1.231 High strength hot work steel such as extrusion and forging dies, pressure casting tools integs, tools for the plastic industy, also available in EFS and ESR. 700 <td>International of the heart intervention of the heart excursion excursion resistance. International excursion of the heart excursion excursion resistance. International excursion excursion the hybrical UTS 200 MPa Very good corrosion resistance. International excursion excursion excursion excursion resistance. International excursion excursion the hybrical UTS 300 MPa Very good corrosion resistance. International excursion excurs</td>	International of the heart intervention of the heart excursion excursion resistance. International excursion of the heart excursion excursion resistance. International excursion excursion the hybrical UTS 200 MPa Very good corrosion resistance. International excursion excursion excursion excursion resistance. International excursion excursion the hybrical UTS 300 MPa Very good corrosion resistance. International excursion excurs
Kides DIN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, etc. Kides Alsi 01045 Amedium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 Alsi 4140 Anti-response of the comparison of the compariso	International of each environments dood wendoung User Head Exclusing ets reactors, pipework. Int C 55-65 Int S 520 Int
Kides DNI 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et beforechrome plating (as above). Used: Paris resistant to surface impact. Kides Alsi C1045 DNI 1.6033 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Paris resistant to surface impact. 4140 Alsi A140 DNI 1.7225 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DNI 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. Tool Steels D2 Alsi D2 D101 1.2279 0 D3 DNI 1.2230 12% Chrome steel, high resistance against abrasive wear, dimensionally stable, for co dires, shear blates, deep drawing, thread rolling des, fine cutting tools for to profile rolls, paper knives, drawing and deep drawing dises. 0 D3 DNI 1.2300 12% Chrome steel, high vear resistance, highly stress cutting and punching tools for to profile rolls, paper knives, drawing and deep drawing dises. 103 DNI 1.2300 12% Chrome steel, supplied in the HT condition, for plastic moulds, frames for pressus forming tools, can be nitrided. 103 DIN 1.2311 Plastic mould steel, supplied in the HT condition, for plastic moulds, frames for pressus forming tools, can be nitrided.	International of the function of the source and even prime to a torus with spical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gears, moulds, etc. International of the source and soure and soure and soure and source and source and source and and so
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et Bill Children Steel Induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AISI 4140 Achrome moly steel with typical UTS 8500-1000 MPa Chrome plated (as above). Cood machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hod machinability. End use: Highly stressed hydraulic parts, etc. 4141 DIN 1.7225 High stressed hydraulic parts, etc. 4140 DIN 1.7225 High stressed hydraulic parts and dept drawing des. 4141 DIN 1.7225 High stressed hydraulic parts and parts hydraulic parts and parts hydraulic parts and parts hydrawing des. 415	face hardness of id. UNS 527/30 Chorde and Scale Mandmanks Good Vecadarity Used: Head Cool and additional participation (decadarity Used: Head Cool and additional participation) RC 55-65 Cast Iron IRC 55-65 Substance Used: Gears, moulds, etc. GL 300 EN-GL35450 A spheroidal graphite cast iron with hytical UTS 415 MPg Excellent machinability, shock and fatigue residence. Used: Gears, moulds, etc. grave surface GL 300 EN-GL3500 High strength grade with good machinability (weldability. Cath. & H.T.; Case hardness typical RC 62; Core: High strength and good houghness. Used: Moderata/highly stressed parts. with prove surface EI2 AS 05300 A leaded grammetel bronze with hytical UTS 270 MPg Excellent machinability. Good corrosion resistance: Good machinability. Gead Corrosion resistance: Cood toughness. with stread PB1 AS 099710 A phosphor bronze with hytical UTS 300 MPa Very good corrosion resistance: Cood toughness. with the required. WHONED Supplied with undersized LD. suitable for honing to finished diameter: Used: Agricultural e Jinders. *NC SSID Economical alterarticulares to honed finish, specially drawn tubes dra
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et beforechrome plating (as above). Used: Paris resistant to surface impact. K1045 AlSI 01045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness on beforechrome plating (as above). Used: Paris resistant to surface impact. 4140 AlSI 4140 Achrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). 4140 DN 1.7225 Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. 1110 DN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. 1124 DN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im profile rolls, gaper knives, drawing, thread rolling des, fine outting tools. 113 DN 1.2239 12% Chrome steel, high resistance, against abrasive wear, dimensionally stable, for co dives, shear blates, drawing and deep drawing des. 113 DN 1.2230 12% Chrome steel, high vear resistance, highly stress cutting and punching tools for through tens to the plate function, and extra stable in EFS and ESN. 113 DN 1.2230 High strength hot work steel such as extrusion and forging des, pressure casting tools invinces, tools theet plastin chrouduster, also available in E	Take bardness of tex. UN S S2/700 Endote and read environments. Sold Acadamy, Used Field Exclargers, FreeDuck, Experiments RR 55-65 Cast Iron CLS560/ EH-GLS560 A spheroid graphic cast ino with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gaus, moulds, etc. prove surface GL3560/ EH-GL3560 A spheroid graphic cast ino with typical UTS 415 MPa Excellent machinability, shock and fatigue resistance. Used: Gaus, moulds, etc. dd purches, GL30 EH-GL320 High strength grade with good acadimy. Weight UTS 415 MPa Excellent machinability, stressed parts. dd purches, GL30 EH-GL320 Cere: High strength and good toughness. Used: UTS 270 MPa Excellent machinability, stressed parts. dd purches, IL62 AS C82600 A leaded grammetal bronze with typical UTS 200 MPa Very good corrosion resistance. dd purches, 954 AS C936400 Cod machinability. Used: Marine, oll and chemical industries. dd purches, PB1 AS C93710 A plosphor bronze with typical UTS 300 MPa Very good corrosion resistance. eds. hydro UNHOHED Supplied with undersized LD. suitable for honing to finished diameter, uset, hydro SiD Economical alternative to a honed finish, specially drawn tubes drawn for use in less critical applications, i.e. agricultural & honetation leyinders.
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, etc. K1045 ASI 01045 DN 1.5603 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 ASI 4140 DN 1.7225 A chrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Coold machinability. End use: Highly stressed hydraulic parts, etc. 4140 DN 1.7225 Hugh Tensile Onrome Plated bar with the addition of Induction Hardening to further im hardness. 0 ASI 02 DN 1.2229 High Tensile Onrome Plated bar with the addition of Induction Hardening to further im hardness. 0 DIN 1.2225 Hugh Tensile Onrome Plated bar with the addition of Induction Hardening to further im hardness. 0 DIN 1.2250 High Tensile Onrome Plated bar with the addition of Induction Hardening to further im hardness. 0 DIN 1.2250 12% Chrome steel, high ware resistance, highly stress cutting and punching tools for th profile rolis, paper knives, drawing and deep drawing dies. 113 AISI B20 DIN 1.2231 Plast method steel, supplied in the H condition, for plastic moulds, frames for pressure forming tools, can be intrided. 120 DIN 1.2255 Ideally suited for hydraulic/pneumatic applications where both bending and flaring is non DIN 1.2255 285 DIN 1.7272 <td< td=""><td>files burdless of str. UNES SEZ.70 Texture burdless with typical UTS 415 MPa Excellent machinability, shock and falligue field and set of the strategy of the str</td></td<>	files burdless of str. UNES SEZ.70 Texture burdless with typical UTS 415 MPa Excellent machinability, shock and falligue field and set of the strategy of the str
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et Bild Charles Components in high speed latters in the second part of the se	Include and Post Involutional Construction Units St27/30 Include and Post Involutional Construction Infect Excision Cast I ron Infect Excision A spheroidal graphic cast inco with typical UIS 270 MPs Excision Interchange Structure Stypical RC 62 Infect Excision State 2300 Infect Excision Excision Infect Excision State 2300 Infect Excision Excision Infect Excision <td< td=""></td<>
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, et beforechrome plating (as above). Used: Parts resistant to surface impact. K1045 AlSI 01045 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness o beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AlSI 4140 Achrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). 4140 DN 1.7225 Good machinability. End use: Highly stressed hydraulic parts, etc. 4140 DN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im hardness. 111 DN 1.7225 High Tensile Chrome Plated bar with the addition of Induction Hardening to further im profile rolls, pager knives, drawing, thread rolling des, fine outling tools. 112 AlSI D2 DU1 1.2279 12% Chrome steel, high resistance against abrasive wear, dimensionably stable, for co portile rolls, pager knives, drawing and deep drawing des. 113 AlSI D2 DU1 1.2279 12% Chrome steel, high vear resistance, highly stress cutting and punching tools for 1 profile rolls, pager knives, drawing and deep drawing des. 113 AlSI D2 DU1 1.2278 Plastic mould steel, supplied in the HT condition, for plastic moulds, frames for pressus forming tools, can be nitrided. 113 DIN 1.2215 Ideally suited for hydraulic/pneumatic applications where both bending and flaring is nor DIN 1.225	Take burgers of the defines of the defines of the definition of the definitio
NU45 DN 1.0503 1.1191 HV1000-1150. Good machinability. Care needed welding. Used: Hydraulic cylinders, etc. K1045 AISI 01045 DN 1.5503 1.1191 A medium carbon steel induction hardened to a case depth of 3.2mm and hardness or beforechrome plating (as above). Used: Parts resistant to surface impact. 4140 AISI 4100 DIN 1.7225 Achrome moly steel with typical UTS 850-1000 MPa Chrome plated (as above). Coord machinability. End use: Highly stressed hydraulic parts, etc. 4140 DIN 1.7225 Hegh Tensile Onrome Plated bar with the addition of Induction Hardening to further im hardness. D2 AISI 02 DIN 1.2299 12% Chrome steel, high ware resistance, highly stress cutting and punching tools for 1 profile rolts, paper knives, drawing and deep drawing diss. D3 JISI 02 DIN 1.2391 12% Chrome steel, high ware resistance, highly stress cutting and punching tools for 1 profile rolts, paper knives, drawing and deep drawing diss. H13 AISI 92 DIN 1.2311 High strength hot work steel such as extrusion and forging dies, pressure casting tools knives, tools for the plastic industry, also available in EFS and ESR. WC ST37.4 AST M A179/A450 DIN 1.0255 Ideally suited for hydraulic/pneumatic applications where both bending and flaring is non DIN 1.0255 MC ST37.4 AST M A179/A450 DIN 1.0255 Ideally developed for the mass production of brass components in high speed latthes Used: Nuck, bots, scare write admains service. 400H Bardnese, providing 30-50 in prop	Text bardies of the
Nues DN 1.0503 1.1191 PH000-1150. Good machinability. Care needed weiding. Used: Hydraulic oplinates, etc. Nues NIG ASE C1045 DN 1.5503 1.1191 Investmen carbon steel induction hardweed to ease depth of 3.2m and hardweed op bedrechrone plating (as above). Used: Parts resistant to surface impact. Image: the transmission of the transmissin the transmission of the transmission of the transmiss	Interviewed in the relation of
Number DNI 1.0503.11191 PM1000-1150. Cood machimability. Care needed weiding. Used: Hydraulic cylinders, etc. Number Number ASIE (1046) Immediation carbon stell induction hardnees to be derectrome plating (as above). Used: Histor Status to surface impact. 14.00 ASIE (1046) Actornee mody steel with hydrauli (JS 550-1000 MPa Chrome plating (as above). Immediation of induction Hardneing to further immediates. 11.00 DIII 1.7225 High Tensile Chrome Plated bar with the addition of induction Hardneing to further immediates. 11.00 DIII 1.7225 High Tensile Chrome Steel, high vessitance against abrasive wear, dimensionally statule, for consecting, high yesistance against abrasive wear, dimensionally statule, for consecting, high wears, drawing and deep drawing diss. 10.01 ASI D2 12% Chrome steel, high wears isstance, highly steess cutting and punching tools for impolite rolls, paper kinkes, drawing and deep drawing diss. 11.03 ASI H13 Highterreight hour work steel wearh, are extravious and forcing dise, pressure cauting balait (in status in status in terms in this isstatus in the status i	The base of the tensor of tensor of the tensor of the tensor of the tensor of the tensor of tensor of the tensor of ten

F 08 8359 5199 E engineering.adelaide stainless.adelaide@w on the accuracy of the information provided

4140 HIGH TENSILE STEEL

4140 is a 1% Chrome Moly general purpose high tensile steel and is the most commonly used of the high tensile steels. 4140 is generally supplied hardened and tempered (to condition T or U). Pre hardened and tempered 4140 can be further surface hardened by flame or induction hardening as well as nitriding. 4140 is used in almost all industry sectors where high tensile parts/components are required.

Stocked Sizes - Roun Hexa			n – 710 mm m – 65 mm								
Bar Finishes - Hot R	olled, Pe	eeled, Tur	ned & Polis	shed, Cold D	rawn & C	entreless Ground					
Related Specifications											
Australia	AS 14	44 – 1996	4140								
Japan JIS G4105 SCM440											
USA	ASTM	AISI 4140 ASTM A29/A29M – 91 4140 SAE 4140									
Chemical Composition	0,12 1	1.0									
	Min. 9	6				Max %					
Carbon	0.36					0.44					
Silicon	0.10					0.40					
Manganese	0.65					1.10					
Chromium	0.75					1.20					
Molybdenum	0.15					0.35					
Phosphorous	0					0.04					
Sulphur	0					0.04					
Mechanical Properties – Harden	ed & Te	mpered 4	140 to AS1	.444 (all finis	shes exce	pt cold drawn)*					
Mechanical Property Designatio	n	R	S	S	Т	U	V	W			
Limited Ruling Section mm*		250	250	150	100	63	30	20			
Tensile Strength Mpa	Min	700	770	770	850	930	1000	1080			
	Max	850	930	930	1000	1080	1150	1230			
0.20% Proof Stress (Yield) Mpa	Min	480	540	570	665	740	835	925			
Elongation on %	Min	15	13	15	13	12	12	12			
Izod Impact J	Min	34	27	54	54	47	47	40			
Charpy Impact J	Min	28	22	50	50	42	42	35			
Hardness Brinell HB	Min	201	223	223	248	269	293	311			
	Max	255	277	277	302	331	352	375			
*For Cold Drawn information con	ntact oui	r office or	refer to AS	1444-1996							
Annealing											
Heat to 800-850 Deg C. Hold unt	il tempe	rature is u	niform thr	oughout the	e section a	and allow to cool in	n furnace.				
Normalising											
For As Rolled, Heat to 870-900 D	-		-		-						
25mm of cross section, and allow					-						
temperature of the material othe	erwise th	ne mechar	nical prope	rties will be	affected.	it is highly recomm	nended that				

normalizing of Q&T steel be undertaken by a recognized heat treatment company.

4145H MODIFIED HIGH TENSILE STEEL

4145H Modified is a Chromium – Molybdenum high tensile steel produced specifically for the Oil and Gas Industry and combines ductility, shock resistance and wear resistance.

Produced to conform to the API Spec 7, 4145H is used to produce Drill Collars, Kelly Bars, Connecting Rods, shafts and gears etc.

Stocked Sizes - Rour	nds 116 mm – 28	35 mm Ø	
Finishes - Hot I	Rolled, Peeled		
Related Specifications			
Australia			
International	API Spec 7		
Chemical Composition			
• • • •	Min. %		Max %
Carbon	0.42		0.49
Silicon	0.15		0.35
Manganese	0.90		1.25
Nickel	0		0.25
Chromium	0.90		1.35
Molybdenum	0.20		0.35
Phosphorous	0		0.035
Sulphur	0		0.04
Copper	0		0.35
Mechanical Properties – Harder	ned & Tempered		
Mechanical Property Designation	on		API -7
Limited Ruling Section mm*			N/A
Tensile Strength Mpa	Min		970 (140,000 PSI)
	Max		
0.20% Proof Stress (Yield) Mpa	Min		755 (110,000 PSI)
Elongation on %	Min		13
Izod Impact J	Min		
Charpy Impact J	Min		54
Hardness Brinell HB	Min		
	Max		352
Annealing			
Heat to 815-850 Deg C. Hold unt	il temperature is uniform	throughout the section	on and allow to cool in furnace.

4340 HIGH TENSILE STEEL

4340 is a 1.8% Nickel-Chrome-Moly high hardenability, high tensile steel. 4340 is generally supplied hardened and tempered (to condition U).

Pre hardened and tempered 4340 can be further surface hardened by flame or induction hardening as well as nitriding. 4340 is used for Heavy duty shafts, Gears spindles, Couplings, Pins. With the addition of Nickel over 4140, 4340 has a better depth of mechanical properties allowing for a larger Limited Ruling Section and resulting in higher core strength at larger diameters.

Stocked Sizes - Round	ds	25 mr	m – 610 mr	n Ø							
Finishes - Hot R	olled, Pe	eeled, Tur	ned & Polis	hed, Centre	less Grou	nd					
Related Specifications											
Australia	AS 14	44 – 1996	4340								
Japan	JIS G4	103 SNCN	1439								
USA	AISI 4	AISI 4340									
		TM A29/A29M – 91 4340									
	SAE 4										
		A322 434	30								
	UNS C	643400									
Chemical Composition	<u>г</u>					-					
	Min. 9	%				Max %					
Carbon	0.37					0.44					
Silicon	0.10					0.35					
Manganese	0.55					0.90					
Nickel	1.55					2.00					
Chromium	0.65					0.95					
Molybdenum	0.20					0.35					
Phosphorous	0					0.04					
Sulphur	0					0.04					
Mechanical Properties – Harden	Ĩ	mpered 4		444 (all finis	shes exce	pt cold drawn)*	1	r			
Mechanical Property Designation	า	R	S	S	Т	U	V	W			
Limited Ruling Section mm*		250	250	150	100	63	30	20			
Tensile Strength Mpa	Min	700	770	770	850		1000	1080			
	Max	850	930	930	1000	1080	1150	1230			
0.20% Proof Stress (Yield) Mpa	Min	480	540	570	665	740	835	925			
Elongation on %	Min	15	13	15	13	12	12	12			
Izod Impact J	Min	34	27	54	54	47	47	40			
Charpy Impact J	Min	28	22	50	50	42	42	35			
Hardness Brinell HB	Min	201	223	223	248	269	293	311			
	Max	255	277	277	302	331	352	375			
*For Cold Drawn information con	tact ou	r office or	refer to AS	1444-1996							
Annealing											
Heat to 800-850 Deg C. Hold unti	l tempe	rature is u	niform thre	oughout the	section a	and allow to cool in	n furnace.				

EN26 (X9940) HIGH TENSILE STEEL

EN26 is a 2.5% Nickel-Chrome-Moly high hardenability, high tensile steel & is generally supplied hardened and tempered (to condition V).

Pre hardened and tempered EN26 can be further surface hardened by flame or induction hardening as well as nitriding. EN26 is used for Heavy duty shafts, Axles, Connecting Rods, Spindles, Motor Shafts, Tool and Die holders etc.

Stocked Sizes - Roun	ds	24 mi	m – 300 mr	n Ø				
Finishes - Hot F	olled, P	eeled, (Tu	rned and P	olished/Cen ⁻	treless Gi	ound available ag	ainst request	t)
Related Specifications								
Australia	AS 14	44 – 1996	X9940					
Great Britain	BS970) Part 3 19	91 – 826M	40				
	BS970) 1955 – E	N26					
Chemical Composition	•							
	Min.	%				Max %		
Carbon	0.36					0.44		
Silicon	0.10					0.35		
Manganese	0.45					0.70		
Nickel	2.30					2.80		
Chromium	0.50					0.80		
Molybdenum	0.45					0.65		
Phosphorous	0					0.04		
Sulphur	0					0.04		
Mechanical Properties – Harden	ed & Te	mpered E	N26 (X994	0) to AS1444	4			
Mechanical Property Designatio	n	U	U	V	V	W	w	Х
Limited Ruling Section mm*		250	150	250	150	250	150	150
Tensile Strength Mpa	Min	930	930	1000	1000) 1080	1080	1150
	Max	1080	1080	1150	1150) 1230	1230	1300
0.20% Proof Stress (Yield) Mpa	Min	725	740	820	835	910	925	1005
Elongation on %	Min	12	12	12	12	11	11	10
Izod Impact J	Min	34	47	34	47	27	40	34
Charpy Impact J	Min	28	42	28	42	22	35	28
Hardness Brinell HB	Min	269	269	293	293	311	311	340
	Max	331	331	352	352	375	375	401
Annealing								
Heat to 790-840 Deg C. Hold unt	il tempe	rature is u	iniform thr	oughout the	e section a	and allow to cool i	n furnace.	

M1020 BRIGHT CARBON STEEL BAR

M1020 is a low carbon mild steel. This bar is supplied in cold drawn or Turned and Polished condition. This bar has excellent weldability, good machinability, reasonable strength and good ductility. M1020 is used extensively across all industrial sectors and is also suitable for carburizing (case hardening). Due to it's low carbon content M1020 is not suitable for Flame or Induction hardening. In a bright finish it is ideally suited for CNC machining, and machining components where much of the length does not require machining.

Stocked Siz	765 -	Roi	und Me	etric -	6 mm – 20	0 mm Ø					
Stocked Sh				perial -	3/16" – 8"	•					
		Squ	uare M	etric -	20mm – 75	5 Sq					
		Squ	uare Im	perial -	3/8'' – 5'' 9	Sq					
Closest Rela	ated Specifi	cations									
Australia	ateu specin	cations	1	1443 – 2004	M1020						
Japan				G4051 S20C	1011020						
USA				SI C1020							
UJA				TM A29 – 91	1020						
			_	E 1020	1020						
			-	NS G10200							
Chemical C	omposition		1								
	-		Μ	in. %				Max %			
Carbon			0.1	15				0.25			
Silicon						0.35					
Manganese			0.3	30	0.90						
Phosphorou	JS				0.05						
Sulphur								0.05			
Typical Me	chanical Pro	perties			rned and Polis						
				o 16mm	17-38mm 39-6				Turned & Polished (All Sizes)		
Tensile Stre				80-790	460-	-	430-660		410-560		
Yield Streng			38	80-610	370-)-480	230-		
Elongation)		10	12			13	22		
Hardness (E	,			2-235	135-	210	120)-195	115-	170	
Standard B										100.070	
3-6mm +0/-0.075	+6-10mm +0/-0.09	+10-18		+18-30mm +0/-0.13	+30-50mm +0/-0.16	+50-80mm +0/-0.19		0-120mm /-0.22	+120-180mm +0/-0.25	+180-250mm +0/-0.29mm	
Annealing	+0/-0.09	+0/-0.1	11	+0/-0.13	+0/-0.10	+0/-0.19	+0	y-0.22	+0/-0.25	+0/-0.29mm	
		Hold u	ntil ton	poraturo is u	niform throug	hout the se	ction	wolle bre	to cool in furnad		
Normalizin		noiu ui		iperature is u		nout the set					
		Hold u	intil ter	nnerature is i	iniform through	h the sectio	n so:	ak for 10-1	5 minutes and a	allow to cool in	
still air.							, 500				
Stress Relie	ving										
	_		ntil ton	noraturo ic u	niform throug	hout the co	ction	coak for 1	hour per 25mm	of costion	
Heat to 650	-700 Deg C.	noia ui	nui ten	iperature is u	IIIIOIIII LIIIOUE	nout the set	LUOII.	30ak 101 I	nour per zumn	I OI SECLIOII.	

M1030 BRIGHT CARBON STEEL BAR

M1030 is a low carbon mild steel. This bar is supplied in cold drawn or Turned and Polished condition, and has reasonable weldability, good machinability, medium strength and good ductility. M1030 is used across all industrial sectors where higher strength than M1020 is required. In a bright finish it is ideally suited for CNC machining, and machining components where much of the length does not require machining.

Stocked Sizes -	Round Metric - 10 mm – 100 mm Round Imperial - 5/16'' – 4'' Ø (Larger & smaller sizes available on request		
Closest Related Spec	ifications		
Australia	AS 1443 – 2004 M1030		
Japan	JIS G4051 S30C		
USA	AISI C1030		
	ASTM A29 – 91 1030		
	SAE 1030		
	UNS G10300		
Chemical Composition	on		
	Min. %	Max %	
Carbon	0.25	0.35	

Phosphorous Sulphur		0.05
Manganese	0.30	0.90
Silicon		0.35
Carbon	0.25	0.35

Typical Me	chanical Pro	operties – Colo	l Drawn & Tur	ned and Polis	hed (For Gu	uidance Only)			
		Up t	o 16mm	17-38	17-38mm 39-6		Turned & Polisl	ned (All Sizes)	
Tensile Stre	ngth (Mpa)	56	50-850	540-7	740	520-710	500-6	500-630	
Yield Streng	gth (Mpa)	44	10-670	430-6	500	410-570	250-3	350	
Elongation	in 50mm (%)	10	11	L	12	20)	
Hardness (E	Brinell BHN)	17	70-245	160-2	215	155-210	150-2	L90	
Standard B	right Tolera	nce (h11) in m	ım						
3-6mm	+6-10mm	+10-18mm	+18-30mm	+30-50mm	+50-80mm	+80-120mr	n +120-180mm	+180-250mm	
+0/-0.075	+0/-0.09	+0/-0.11	+0/-0.13	+0/-0.16	+0/-0.19	+0/-0.22	+0/-0.25	+0/-0.29mm	
Annealing									
Heat to 850)-900 Deg C.	Hold until ter	nperature is u	niform throug	hout the se	ction and allow	v to cool in furnac	e.	
Normalizin	g								
Heat to 870)- 920 Deg C	. Hold until te	mperature is u	ពៅform throuរ្	gh the section	on, soak for 10	-15 minutes per 2	5mm of cross	
section, and	d allow to co	ool in still air.							
Stress Relie	ving								
Heat to 600 and cool in		Hold until ter	nperature is u	niform throug	hout the se	ction, soak for	1 hour per 25mm	of section,	

1045 BRIGHT CARBON STEEL BAR

1045 is a medium carbon steel with medium tensile strength. This bar is supplied in As Rolled bright condition (can be cold drawn or turned and polished). 1045 combines reasonable weldability, with good machinability, and can be flame or induction hardened.

Typical Applications are: Various axles, bolts, connecting rods, Hydraulic Clamps and Rams, pins, studs, spindles, rolls and other general engineering applications. Also used for Sprockets, and lower strength gears.

Roun			Round Round I Hexago	Imperial	3/8'' –	n – 150 mm Ø · 6‴ Ø n – 50.8 mm		Square Square		20 mm – 40 m 3/4" – 1. 1/2"			
Related Sp	ecifications												
Australia				AS 1443 ·	- 1994 :	1045							
Japan				JIS G4051 S45C									
USA				AISI C1045									
				ASTM A29 – 91 1045									
				SAE 1045									
				UNS G10450									
Chemical (Composition												
•				Min. %					Max %				
Carbon				0.43					0.50				
Silicon				0.10 0.35									
Manganes	е			0.60 0.90									
Phosphore	ous			0.04									
Sulphur				0.04									
Typical Me	echanical Pro	oper	ties – C	old Draw	n & Tur	ned and Polis	shed (For G	uidan	ce Only - in	dicative)			
			Up	to 16mm	CD	17-38n	ווי CD	39-	53mm CD	Turned & Polished (All Size			
Tensile Str	ength (Mpa)			690-950		650-830		640-800		600-730			
Yield Stren	gth (Mpa)			540-760		510-	650	500-630		300-450			
Elongation	in 50mm (%	5)		8		8			9	1	.4		
Hardness (Brinell BHN)			205-280		195-	245	1	90-235	179	-215		
	Bright Tolera		(h11) ir	mm		•		•		•			
3-6mm	+6-10mm		0-18mm		0mm	+30-50mm	+50-80mm	า +	80-120mm	+120-180mm	+180-250mm		
+0/-0.075	+0/-0.09	+0,	/-0.11	+0/-0.	13	+0/-0.16	+0/-0.19	+	0/-0.22	+0/-0.25	+0/-0.29mm		
Annealing													
Heat to 80	0-850 Deg C	. Hol	d until t	emperati	ure is ur	niform throug	shout the se	ection	and allow t	to cool in furnac	e		
Normalizir	ıg												
Heat to 87	0- 920 Deg C	С. Но	ld until	temperat	ure is u	niform throu	gh the secti	on, sc	ak for 10-1	5 minutes per 2	5mm of cross		
section, ar	nd allow to co	ool ii	n still ai	r									
Stress Reli	eving												
Heat to 55	0-660 Deg C	. Hol	d until t	emperati	ure is ur	niform throug	hout the se	ection	soak for 1	hour per 25mm	of section,		
and cool ir	n still air												

S12L14 BRIGHT CARBON STEEL BAR

S12L14 is a premium free machining low tensile, low hardenability carbon steel, with free machining characteristics due to the addition of both Lead and Sulphur. As this material contains Lead, it is not recommended for welding, as it is both problematic and a possible health hazard.

S12L14 is generally only used in the as rolled condition, and then either cold drawn or turned to allow feeding through NC machines. S12L14 can be carburised and electroplated. Core strength will, however, remain low. S12L14 is not recommended for flame, induction or nitride hardening.

Typical applications included lightly stressed components, and machinery parts. Ideally suited for high volume lightly stressed components.

Stocked Sizes - Generally stocked for customer specific requirements. Contact your local branch for further information.

Related Sp	ecifications									
Australia AS 1443 – 1994 12L14										
Japan			JI	5 G 4804 SUM	22L					
USA			AI	SI/SAE 12L14						
			U	NS G12144						
Chemical C	omposition									
			M	Min. %				Max %		
Carbon			0					0.15		
Silicon			0					0.10		
Manganese	õ		0.	80				1.20		
Phosphoro	us		0.	04				0.09		
Sulphur			0.	25				0.35		
Lead			0.	15				0.35		
Typical Me	chanical Pro	opertie	es – Colo	d Drawn & Tu	rned and Polis	shed (For Gເ	iidanc	e Only - in	dicative)	
			Up to	o to 16mm CD 17-38mm		nm CD	39-6	3mm CD	Turned & Poli	shed (All Sizes)
Tensile Stre	ength (Mpa)		48	80-760	430-690		400-630		370	-520
Yield Stren	gth (Mpa)		3!	50-590	330-550		290-500		230	-310
Elongation	in 50mm (%)		7	8	8		9	1	.7
Hardness (Brinell BHN)		14	42-225	25 120-205		115-185		105-155	
Standard B	right Tolera	nce (h	111) in n	າm						
3-6mm	+6-10mm	+10-1	18mm	+18-30mm	+30-50mm	+50-80mm	+8	0-120mm	+120-180mm	+180-250mm
+0/-0.075	+0/-0.09	+0/-0	0.11	+0/-0.13	+0/-0.16	+0/-0.19	+0	/-0.22	+0/-0.25	+0/-0.29mm
Annealing	•	•		•	•				•	•
Heat to 890	0-920 Deg C.	Hold	until ter	nperature is u	niform throug	hout the se	ction a	ind allow t	o cool in furnac	e.
Normalizin										
Heat to 900	0-940 Deg C.	Hold	until ter	nperature is u	niform throug	gh the sectio	n, soa	k for 10-15	5 minutes per 25	5mm of cross
section, an	d allow to co	ool in s	still air.							
Stress Relie	eving									
Heat to 500	0-700 Deg C.	Hold	until ter	nperature is u	niform throug	hout the se	ction,	soak for 1	hour per 25mm	of section,
and cool in	still air									

1214 BRIGHT CARBON STEEL BAR

1214 is a free machining low tensile, low hardenability carbon steel, with free machining characteristics due to the addition of Sulphur. The addition of Sulphur makes welding of this material difficult.

1214 is generally only used in the as rolled condition, and then either cold drawn or turned to allow feeding through NC machines. 1214 can be carburised achieving surface hardness of around 60HRC in smaller sections, however this will reduce as section size increases. Core strength will, however, remain low. 1214 is not recommended for flame, induction or nitride hardening.

Typical applications included lightly stressed components, and machinery parts.

			Round Me		– 110 mm Ø					
Round		Round Im	l Imperial 1/4'' – 5'' Ø							
Hexag		Hexagon	on 7/16'' – 75 mm A/F							
			Square	1/4'' -	– 4'' A/F					
Related Sp	ecifications									
Australia			AS	5 1443 – 1994	1214					
Japan			JI.	5 G 4804 SUM	22					
USA			AI	SI 1213 and 1	215					
			AS	STM A29/A29I	M – 91 1213 a	nd 1215				
			SA	AE 1213 and 12	215					
			U	NS G12130						
Chemical C	omposition							1		
			Μ	lin. %				Max %		
Carbon			0	0				0.15		
Silicon			0	0				0.10		
Manganese			0.	0.80			1.20			
Phosphoro	us		0.	0.04				0.09		
Sulphur			_	0.25 0.35						
Typical Me	chanical Pro	per		d Drawn & Tu	rned and Polis	shed (For Gເ	uidanc	e Only - in	dicative)	
			Up to	p to 16mm CD 17-38mm CD			39-63mm CD			shed (All Sizes)
Tensile Stre	ength (Mpa)		48	480-760		430-690		00-630	370-520	
Yield Stren	gth (Mpa)		3!	50-590	330-	330-550		90-500	230-310	
Elongation	in 50mm (%)		7 8		8	9		17	
	Brinell BHN)			142-225 120-2		205	115-185		105-155	
	right Tolera			1	1				1	1
3-6mm	+6-10mm		0-18mm	+18-30mm	+30-50mm	+50-80mm		80-120mm	+120-180mm	+180-250mm
+0/-0.075	+0/-0.09	+0,	/-0.11	+0/-0.13	+0/-0.16	+0/-0.19	+()/-0.22	+0/-0.25	+0/-0.29mm
Annealing										
Heat to 890)-920 Deg C.	Hol	ld until ter	nperature is u	iniform throug	ghout the se	ction a	and allow t	o cool in furnac	е.
Normalizin	0									
Heat to 900-940 Deg C. Hold until temperature is uniform through the section, soak for 10-15 minutes per 25mm of cross										
	d allow to co	ol i	n still air.							
Stress Relie										
Heat to 500)-700 Deg C.	Hol	ld until ter	nperature is u	niform throug	ghout the se	ction,	soak for 1	hour per 25mm	of section,
and a set of the										

and cool in still air

954 ALUMINIUM BRONZE

954 Bronze is a high strength aluminium bronze, with high hardness and abrasion resistance.954 Bronze is a high strength reasonable machining properties and good general corrosion resistance.954 Bronze is suitable for high strength bearings with good impact resistance, but requires reliable full film lubrication due to poor anti seizing properties.

Sizes Available -	Solid Hollow	3/4" – 8" Ø 1" – 8" O/D	
Related Specifications			
United Kingdom	BS1400 AB-	l	
UNS	C95400		
German	CuAl11Fe4		
Japan	CAC702C		
USA	ASTM B271, SAE 9C	′B505	
Chemical Composition	*		
	Min. %	Max %	
Aluminium	10.0	11.5	
Iron	3.0	5.0	
Nickel	0	1.5	
Manganese	0	0.5	
Copper	Balance		
Typical Mechanical Pro	perties – (For Guidance	Only)	
Tensile Strength (Mpa)		510-590 MPa	
Yield Strength (Mpa)		200-230 MPa	
Elongation (%)		12% Min	
Hardness (Brinell BHN)		170-180 BHN	
Other Information		·	
Specific Gravity		7.45	
Maximum Recommend	ed Operating Temperat	ure 260 Deg C	
Stress Relieving Tempe	rature	316 Deg C	
Time at Temperature		1 hour per 25mm of section thickness	

LG-2 BRONZE

Time at Temperature

LG-2 Bronze is a general purpose leaded gunmetal conforming to BS1400 – 1985. Lg-2 has excellent machining properties, medium strength, and is not subject to dezincification (Category I alloy). It has reasonable resistance to saltwater and brine making it suitable for pump and valve components.

LG-2 is also suitable for bearing and gearing applications that are light duty and negligible loading.

Stocked Sizes -	Solid Hollow	½" – 8" Ø 1" – 10" O/D			
Related Specification	S				
UNS	C83600				
German	CuSn5ZnPb				
Japan	JIS CAC4020	C (BC6)			
USA	ASTM B271	/B505			
	SAE 40/J462	2			
Chemical Compositio	n*				
	Min. %		Max %		
Tin	4.0		6.0		
Lead	4.0		6.0		
Zinc	4.0		6.0		
Nickel	0		1.0		
Copper	Balance				
Typical Mechanical P	roperties – (For Guidanco	e Only)			
Tensile Strength (Mpa	•	270-30	0 MPa		
Yield Strength (Mpa)	^)	120 MP			
Elongation (%)		20	6		
Hardness (Brinell BHN	1)				
Other Information	• /	75 8114	1		
Specific Gravity		8.8			
	nded Operating Temperat	0.0	230 Deg C		
Stress Relieving Temp		260 De	-		
Suess veneving fellip		200 De	Б C		

1 hour per 25mm of section thickness

PB-1 PHOSPHOR BRONZE

PB-1 is a phosphor bronze in accordance with BS1400 (1985). It has good machining properties and combines high strength with good corrosion resistance to saltwater and brine. This makes it ideally suitable for pump and valve components. PB-1 is also suitable for bearings with medium to high loads but must have adequate lubrication and good alignment. It is also ideally suited for heavy duty gears and wormwheels with high working loads and speeds providing adequate lubrication and alignment is considered.

Sizes Available -	Solid Hollow	3/4'' – 8'' Ø 1'' – 8'' O/D		
Related Specifications				
United Kingdom	BS1400 PB-1			
UNS	C90700/C9071	.0		
German	CuSn10			
Japan	CAC502C (PBC	2C)		
USA	ASTM B505			
	SAE 65			
Chemical Composition	*			
	Min. %		Max %	
Tin	10.0		11.0	
Phosphorous	0.50		1.0	
Lead			0.25	
Copper	Balance			
Typical Mechanical Pro	operties – (For Guidance O	nly)		
Tensile Strength (Mpa))-360 MPa	
Yield Strength (Mpa)		170) MPa	
Elongation (%)		109	6	
Hardness (Brinell BHN)		100)-150 BHN	

Other Information	
Specific Gravity	8.8
Maximum Recommended Operating Temperature	250 Deg C
Stress Relieving Temperature	260 Deg C
Time at Temperature	1 hour per 25mm of section thickness

.....

1020 CARBON STEEL BAR

1020 is a low carbon mild steel. This bar is supplied in As Rolled black condition, with sizes over 250mm also supplied in forged and Rough Machined condition. 1020 combines excellent weldability, with good machinability and very good ductility.

Typical Applications are: General Engineering Parts and Components, Welded Structures etc. In carburised condition: Camshafts, Light Duty Gears, Gudgeon Pins, Ratchets, Spindles, Worm Gears etc.

Stocked Sizes -	As Rolled Round Forged Rough Machined	36 mm – 300 mm 250 mm – 530 mm	•	
Related Specifications				
Australia	AS 1442/1443 – 19	992 1020		
Japan	JIS G4051 S20C			
USA	AISI 1020			
	ASTM A29 – 91 10	20		
	SAE 1020			
	UNS G10200			
Chemical Composition	*			
	Min. %		Max	%
Carbon	0.18		0.23	
Silicon	0.10		0.35	
Manganese	0.30		0.60	
Phosphorous			0.04	
Sulphur			0.04	
	kimum Chromium content of 0.5%			
<i>1</i> 1	operties – As Rolled (For Guida	ance Only)		
Tensile Strength (Mpa)		360	0-560	
Yield Strength (Mpa)		280	0-350	
Elongation in 50mm (%	6)	36		
Hardness (Brinell BHN)		110	0-170	
Annealing				
Heat to 870-910 Deg C	. Hold until temperature is unif	form throughout th	e section and all	ow to cool in furnace.
Normalizing				
Heat to 890- 940 Deg 0 still air.	C. Hold until temperature is uni	form through the s	ection, soak for :	10-15 minutes and allow to cool in
Stress Relieving				
-	. Hold until temperature is unif	form throughout th	e section, soak fo	or 1 hour per 25mm of section,

1045 MEDIUM TENSILE CARBON STEEL BAR

1045 is a medium tensile carbon mild steel. This bar is supplied in As Rolled black condition, with sizes over 250mm also supplied in forged and Rough Machined condition. 1045 combines good strength and impact properties with good machinability with reasonable weldability.

1045 is used extensively across all industry sectors due to it's versatility and flame/induction hardening capabilities. Typical applications include Axles, Bolts, Sprockets/Gears, Connecting Rods, Hydraulic Clamps, Rams, Pins, Rolls, Studs, Shafts Spindles etc.

Stocked Sizes -	Round -	As Rolled Round Forged Rough Machined	20 mm – 25 250 mm – 7	
	Square -	As Rolled Square	40 mm – 10	00 mm Sq
Related Specifications				
Australia	AS 144	2/1443 – 1992 1045		
Germany	C45 (V	/.Nr 1.0503)		
	CK45 (W. Nr 1.1191)		
Japan	JIS G40	051 S45C		
USA	AISI C1	.045		
	ASTM	A29 – 91 1045		
	SAE 10)45		
	UNS G	10450		
Chemical Composition*				
	Min. %	0		Max %
Carbon	0.43			0.50
Silicon	0.10			0.35
Manganese	0.60			0.90
Phosphorous				0.04
Sulphur				0.04
*Vulcan allow for a maximum	Chromium conte	nt of 0.5%		
Typical Mechanical Propert	ties – As Rolle	d (For Guidance Only)		
Tensile Strength (Mpa)			570-700	
Yield Strength (Mpa)		:	300-450	
Elongation in 50mm (%)		:	14-30	
Hardness (Brinell BHN)		:	170-210	
Annealing				
Heat to 800-850 Deg C. Hole	d until temper	ature is uniform throughout	the section a	ind allow to cool in furnace.
Normalizing		-		
Heat to 870- 920 Deg C. Ho	ld until tempe	rature is uniform through th	e section, soa	ak for 10-15 minutes and allow to cool in
still air.		-		
Stress Relieving				
Heat to 550-660 Deg C. Hole and cool in still air	d until temper	ature is uniform throughout	the section,	soak for 1 hour per 25mm of section,

.

1.6587 CASE HARDENING STEEL

1.6587 is a 1.8% Chromium – Nickel – Molybdenum high hardenability, case hardening steel, generally supplied in the annealed condition with hardness around 225 Bhn. As with EN36A, 1.6587 has high core strength and toughness with case hardening capability up to 62 HRC.

Typical uses include: Large gears, heavy duty bushing, bearings, cam followers, extractors, shafts, wear pins, pump shafts, sprockets etc.

Stocked Sizes - Roun	ds 33 mm – 610 r	nm Ø				
Finishes - Peeled/Rough Machined						
Related Specifications						
Australia	AS1444-1996-X4317					
Germany	W. Nr 1.6587					
	DIN 17CrNiMo6/18CrNiN	Ло7-6				
United Kingdom	BS970 Part 3 1991 – 820	M17/822M17				
	BS 970 1955 – EN354/EN	1355				
USA	SAE 4317					
Chemical Composition						
	Min. %	Max %				
Carbon	0.15	0.21				
Silicon		0.40				
Manganese	0.50	0.90				
Nickel	1.40	1.70				
Chromium	1.50	1.80				
Molybdenum	0.25	0.35				
Phosphorous		0.035				
Sulphur		0.035				
Typical Mechanical Properties in	n the Annealed Condition					
Mechanical Property Designation	n					
Tensile Strength Mpa	Approx.	700				
0.20% Proof Stress (Yield) Mpa	Approx.	520				
Elongation on %	Approx.	23				
Hardness Brinell HB	Approx.	200 (Max. 230 BHN)				
Annealing						
Heat to 830-850 Deg C. Hold unt	il temperature is uniform th	nroughout the section and allow to cool in furnace.				

8620 CASE HARDENING STEEL

8620 is a low nickel – chromium – molybdenum case hardening steel. 8620 is generally supplied in the as rolled condition and is primarily carburised with surface hardness up to 62 HRC.

Used for light to medium stressed components where surface hardness and wear resistance is required, uses include: Arbors, bearings, bushings, cam shafts, pinions, gears, guide pins, splined shafts, ratchets sleeves etc.

Stocked Sizes - Round	ds 14 mm – 230 mm	n Ø					
Finishes - Hot Rolled, Peeled							
Related Specifications							
Australia	AS1444-1996-8620/8620H						
Germany	W. Nr 1.6523 – DIN 21NiCrl	Mo2					
United Kingdom	BS970 Part 3 1991 - 805M2	0					
	BS 970 1955 – EN362						
Japan	JIS G4052 SNCM 220H						
USA	SAE/AISI 8620						
	ASTM A29/A29M 1991 862	0					
	UNS G86200						
Chemical Composition	1						
	Min. %	Max %					
Carbon	0.17	0.23					
Silicon	0.10	0.35					
Manganese	0.60	0.95					
Nickel	0.35	0.75					
Chromium	0.35	0.65					
Molybdenum	0.15	0.25					
Phosphorous		0.04					
Sulphur		0.04					
Typical Mechanical Properties in							
Mechanical Property Designation							
Tensile Strength Mpa	Approx.	820					
0.20% Proof Stress (Yield) Mpa	Approx.	590					
Elongation on %	Approx.	22					
Hardness Brinell HB	Approx. 240						
Annealing							
Heat to 820-850 Deg C. Hold unti	I temperature is uniform thro	ughout the section and allow to cool in furnace.					

EN36A CASE HARDENING STEEL

EN36A is a 3.2% Nickel – chromium high hardenability case hardening steel, generally supplied in the annealed condition. Exhibiting high core strength and toughness whilst having the ability to be case hardened up to 62 HRC, typical uses include: Gears, heavy duty bushing, collets, conveyor pins, sprockets, shafts etc.

Stocked Sizes - Rour	nds 14 mm – 260 mm Ø						
Finishes - Peel	- Peeled						
Related Specifications							
Australia	AS1444-1996-X3312/X3312H						
Germany	W. Nr 1.5752 – DIN 14NiCr14						
United Kingdom	BS970 Part 3 1991 – 655M13 BS 970 1955 – EN36A						
USA	SAE 3310 9310 UNS G33106/G93106	SAE 3310 9310					
Chemical Composition							
	Min. %	Max %					
Carbon	0.10	0.16					
Silicon	0.10	0.40					
Manganese	0.35	0.60					
Nickel	3.00	3.75					
Chromium	0.70	1.00					
Molybdenum		0.20					
Phosphorous		0.04 (Ultraclean – Max. 0.01)					
Sulphur		0.04 (Ultraclean – Max. 0.01)					
Typical Mechanical Properties i	n the Annealed Condition						
Mechanical Property Designation	on						
Tensile Strength Mpa	Approx.	700/770					
0.20% Proof Stress (Yield) Mpa	Approx.	540					
Elongation on %	Approx.	25					
Hardness Brinell HB	Approx.	220 (Max. 255 BHN)					
Annealing	·						
Heat to 830-850 Deg C. Hold un	til temperature is uniform througho	out the section and allow to cool in furnace.					

1045 HARD CHROME PLATED BAR

1045 Chrome Plated Bar is supplied Cold Drawn or Turned, ground, chrome plated and polished condition. Chrome plating hardness has a surface hardness of HV 1000-1150.

1045 Chrome bar is the most commonly used of the Chrome Bar options as it combines good strength and impact properties and a cost effective solution.

Typical Applications include: Agricultural equipment, compressors, jacks, transport lifting equipment, hoists and mining/earthmoving equipment.

Available Sizes	- Metric Imperi		– 200 mm Ø 8" Ø					
Related Specificat	ions – Base Mat	erial						
Australia		AS 1442	/1443 - 1992 104	5				
Germany		C45 (W.	Nr 1.0503)					
		CK45 (W	/. Nr 1.1191)					
Japan	Japan JIS G4							
USA		AISI C10	45					
		ASTM A	29 – 91 1045					
		SAE 104	5					
		UNS G1	0450					
Chemical Compos	ition*			<u> </u>				
		Min. %			Max %			
Carbon		0.43			0.50			
Silicon		0.10			0.35			
Manganese		0.60			0.90			
Phosphorous					0.04			
Sulphur					0.04			
Typical Mechanic	al Properties Ba	sed on Turned Ba	nr – (For Guidance	Only)				
Tensile Strength (570-700				
Yield Strength (M	1 1		300-500					
Elongation in 50m				14-30				
Hardness (Brinell	BHN)		170-210					
Hard Chrome Plat	ing							
Typical Surface Ha	rdness (Chrome	Plated)		HV 1000-1150)			
Typical Surface Sn	noothness			0.10 – 0.30 um	Ra (Microns)			
Typical Surface De	eposit			0.025-0.050mn	n (0.001''-0.002'')			
Diameter & Straig	htness Tolerand	e						
Size mm	Up to 51	mm dia	Over 51mm	Over 51mm to 102mm Dia Over 102 mm o				
Dia Tol (mm)	+0	-0.025	+0	-0.05	+0	-0.075		
Straightness	0.25mm/	1000mm		0.30mm/	1000mm			

1045 INDUCTION HARDENED CHROME PLATED BAR

1045 Chrome Plated Bar is supplied Cold Drawn or Turned, Induction Hardened, ground, chrome plated and polished condition. Chrome plating hardness has a surface hardness of HV 1000-1150, and is Induction Hardened to a depth of approximately 3mm and a hardness of 55-65 HRC.

1045 Chrome bar is the most commonly used of the Chrome Bar options as it combines good strength and impact properties and a cost effective solution.

Typical Applications include: Mining and Earthmoving Equipment as well as heavy duty industrial equipment.

Available Sizes Metric 25 mm – 110 mm Ø Imperial - 1" – 6" Ø
--

Related Specifications – Ba	se Material					
Australia	AS 1442/1443 – 1992 1045	AS 1442/1443 – 1992 1045				
Germany	C45 (W.Nr 1.0503)					
	CK45 (W. Nr 1.1191)					
Japan	JIS G4051 S45C					
USA	AISI C1045					
	ASTM A29 – 91 1045	ASTM A29 – 91 1045				
	SAE 1045	SAE 1045				
	UNS G10450					
Chemical Composition*						
	Min. %	Max %				
Carbon	0.43	0.50				
Silicon	0.10	0.35				
Manganese	0.60	0.60 0.90				
Phosphorous		0.04				
Sulphur		0.04				

Typical Mechanical Properties Based on Turned Bar – (For Guidance Only)							
Tensile Strength	(Mpa)		570-700				
Yield Strength (N	Лра)			300-500			
Elongation in 50	mm (%)			14-30			
Hardness (Brinel	ll BHN)			170-210			
Typical Induction Hardened Case Properties							
Depth of hardne	SS			Approx. 3mm			
Hardness			55-65 HRC				
Hard Chrome Plating							
Typical Surface H	Hardness (Chrome	Plated)		HV 1000-1150			
Typical Surface S	Smoothness			0.10 – 0.30 um Ra (Microns)			
Typical Surface	Deposit			0.025-0.050mm (0.001''-0.002'')			
Diameter & Stra	ightness Toleran	ce					
Size mm	Up to 51mm dia		Over 51mm to	102mm Dia	Over 102	2 mm dia	
Dia Tol (mm)	+0	-0.025	+0	-0.05	+0	-0.075	
Straightness	0.25mm/	1000mm		0.30mm/1	000mm		

4140 HARD CHROME PLATED BAR

4140 High Tensile Chrome Plated Bar is supplied in the hardened and tempered condition, Cold Drawn or Turned, ground, chrome plated and polished. Chrome plating hardness has a surface hardness of HV 1000-1150. 4140 Chrome bar is used in applications demanding higher yield and tensile strength compared to 1045 Chrome Bar, and is also available in the Induction Hardened condition in some sizes. Induction Hardened 4140 generally has a hardened depth of approximately 3mm and hardness of 55-65 HRC.

Typical Applications include: Agricultural equipment, compressors, jacks, transport lifting equipment, hoists and mining learthmaxing agricultural equipment.

Available Sizes		Vetric - mperial -		n – 120 mm Ø - 6′′ Ø			
Related Specifica	tions – Bas	e Material					
Australia			AS 1444	- 1996 4140			
Germany			W. Nr 1	.7225 42CrMo4			
Japan			JIS G410)5 SCM440			
USA			AISI/SAE	E 4140			
			ASTM A	29/A29M – 91 4140			
			UNS G4	1400			
Chemical Compo	sition*		<u>.</u>				
			Min. %			Max %	
Carbon			0.36			0.44	
Silicon			0.10			0.40	
Manganese			0.65			1.10	
Chromium			0.75			1.20	
Molybdenum 0.15							
Phosphorous					0.04		
Sulphur						0.04	
The stand base based		D	Turned D				
		les Based on	Turned Ba	ar – (For Guidance C	850-1000		
Tensile Strength (
Yield Strength (M			650-850				
Elongation in 50n	, ,		14-30				
Hardness (Brinell					248-302		
Hard Chrome Pla		romo Diatad	\ \		111/ 1000 1150		
Typical Surface Hardness (Chrome Plated)					HV 1000-1150		
Typical Surface Smoothness					0.10 – 0.30 um Ra (Microns) 0.025-0.050mm (0.001''-0.002'')		
11	Typical Surface Deposit				0.025-0.050mm	11(0.001 -0.002)	
Diameter & Straightness ToleranceSize mmUp to 51mm diaOv				Over 51mm to	102mm Dia	Over 102	mm dia
Dia Tol (mm)	40 +0		.025	+0	-0.05	+0	-0.075
· · ·		-		τυ	0.30mm/		-0.075
Straightness 0.25mm/1000mm					0.30(1)(1)/	100011111	

20MnV6 HOLLOW BAR

20MnV6 Hollow Bar is a Vanadium micro alloyed carbon-manganese steel. Supplied in the as rolled or cold drawn condition (size dependent), it has a typical ultimate tensile range of 550-790 Mpa and high typical yield strength of 430-570 Mpa. 20mnV6 is a readily weldable, high yield/tensile strength micro alloy steel, and is extensively used in almost all industry sectors for a wide range of applications.

Stocked Sizes - Roun		m O/D – 250 mm O/D nm O/D to 610 mm O/D
Finishes - Hot R	colled and Cold Rolled	
Related Specifications		
Europe	EN 10294-1 2005 – E470	
Germany	W. Nr. 1.5217 20MnV6	
USA	UNS K01907	
Chemical Composition		
	Min. %	Max %
Carbon	0.16	0.22
Silicon	0.10	0.50
Manganese	1.30	1.70
Vanadium	0.08	0.15
Phosphorous	0	0.03
Sulphur	0.015	0.05
Mechanical Properties as Rolled		
Tensile Strength Mpa (Min)	<16mm Wall	650
	16mm<25mm Wall	620
	>25mm Wall	550
0.20% Proof Stress (Yield) Mpa	<16mm Wall	470
	16mm<25mm Wall	460
	25mm<70mm Wall	430
	<70mm Wall	Ask For Test Cert
Elongation % Min		17%
Hardness Brinell HB Min		170 BHN
Annealing		
Heat to 815-850 Deg C. Hold unt	il temperature is uniform thro	oughout the section and allow to cool in furnace.

316/L STAINLESS STEEL HOLLOW BAR

316/L is a low carbon austenitic marine grade stainless steel. It is characterized as a good strength stainless steel with excellent corrosion resistance in the annealed condition. Optimum corrosion resistance is achieved in annealed condition.

316/L Stainless Steel is not suitable for hardening by thermal treatment, but can be increased by cold working. Note that this has a corresponding reduction in ductility.

Typical uses include: Textile Equipment, Marine Equipment and fittings, Pulp and Paper processing equipment, medical equipment etc.

Stocked Sizes - 32 mm – 400 mm O/D

Related Specifications		
Germany	W Nr 1.4404 X2CrNiMo17 13 2	
	W Nr 1.4435 X2CrNiMo18 14 3	
USA	ASTM A511-96 316L	
	SAE 30316L AISI 316L	
	UNS S31603	
Chemical Composition		
	Min. %	Max %
Carbon	0	0.08 (316L - 0.03)
Silicon	0	1.00
Manganese	0	2.00
Nickel	10.00	15.00
Chromium	16.00	18.00
Molybdenum	2.00	3.00
Phosphorous		0.045
Sulphur		0.030

Typical Mechanical Properties – At Room Temperature in rolled annealed condition (For Guidance Only)					
Tensile Strength (Mpa) 580					
Yield Strength (Mpa)	290				
Elongation in 50mm (%)	50				
Hardness (Brinell BHN) 175					
Annealing					
Heat to 1020-1100 Deg C. Hold until temperature is uniform throughout the section. Soak as required (Min 30 minutes per					

Heat to 1020-1100 Deg C. Hold until temperature is uniform throughout the section. Soak as required (Min 30 minutes per 25mm of section). Quench in water to optimize corrosion resistance.

303 STAINLESS STEEL

303 is a free machining austenitic stainless steel with good strength and corrosion resistance. 303 is characterized by excellent machinability and non-galling properties. The Sulphur addition does slightly lower it's corrosion resistance when compared to 304 S/S, and has low resistance to acids.

303 cannot be hardened by thermal treatment, but strength and hardness can be improved by cold drawing with subsequent reduction in ductility.

Stocked Sizes	-	Rounds	6 mm – 150 mm Ø
Bar Finishes	-	Peeled, Turned	& Polished, Cold Drawn & Centreless Ground

Related Specifications Germany	W Nr 1.4305 X100	rNiS 18 9				
Japan	JIS G4303 SUS 303					
United Kingdom	BS970 Part 3 1991					
United Kingdom	BS970 1955 EN58					
USA	ASTM A582/582M					
UJA	SAE 30303	-300 202				
	AISI 303					
	UNS \$30300					
Chemical Composition*	0110 000000					
	Min. %		Max %			
Carbon	0		0.15			
Silicon	0		1.00			
Manganese	0		2.00			
Nickel	8.00		10.00			
Chromium	17.00		19.00			
Phosphorous	0		0.06			
Sulphur	0.15		0.35			
*Molybdenum content	up to 1.00% is optional					
	quirements to ASTM A582/5					
Typical Mechanical Prop	erties (For Ref Only)	Cold Drawn	Other			
Tensile Strength Mpa		690	550			
0.20% Proof Stress (Yield) Mpa	415	240			
Elongation on %		36	55			
Charpy Impact J			120			
Hardness Brinell HB		220	165			
Annealing						
	1200 Deg C. Hold until tempe	erature is uniform through	out section. Soak as required (as a guide			
	ction) Quench in water to op					

304 STAINLESS STEEL

304 is a chromium-nickel austenitic stainless steel with good strength and very good corrosion resistance. 304 has very good corrosion resistance to most oxidizing agents. 304 cannot be hardened by thermal treatment, but strength and hardness can be improved by cold drawing with subsequent reduction in ductility. This is a non-magnetic grade, however it can become mildly magnetic following cold working. Annealing is required to rectify if necessary.

Stocked Sizes	-	Rounds	4.76 mm – 203.2 mm Ø
Bar Finishes	-	Peeled, Turned	& Polished, Cold Drawn & Centreless Ground

Related Specifications					
Germany	W. Nr 1.4301 X5CrNi 18 10				
Japan	JIS G4303 SUS 304				
United Kingdom	BS 970 Pt 3 1991 3	304S15/304S31			
USA	ASTM A276-98b 3	04			
	SAE 30304				
	AISI 304				
	UNS30400				
Chemical Composition*					
	Min. %		Max %		
Carbon	0		0.08		
Silicon	0		1.00		
Manganese	0		2.00		
Nickel	8.00		10.50		
Chromium	18.00		20.00		
Phosphorous	0		0.045		
Sulphur	0		0.03		
*Molybdenum content up to 1.00	% is optional				
Typical Mechanical Properties (Fo	r Ref Only)	Cold Drawn	Other		
Tensile Strength Mpa		680	590		
0.20% Proof Stress (Yield) Mpa		500	240		
Elongation on %		42	55		
Hardness Brinell HB		195	155		
Annealing					
Heat uniformly to 1020-1100 Deg	C. Hold until tempe	erature is uniform through	out section. Soak as required (as a guid	le 3	
minutes per 25mm of section) Que		-			

316/316L STAINLESS STEEL

316 is a chromium-nickel-molybdenum austenitic stainless steel with good strength and excellent corrosion resistance. Supplied in the annealed condition and with the addition of molybdenum, 316 stainless steel is ideally suited for marine applications, as well as showing excellent resistance to a variety of chemicals. 316L has a reduced carbon content which increases weldability and reduces the need for post weld annealing. Both 316 and 316L cannot be hardened further by thermal heat treatment, but strength and hardness can be significantly improved by cold working, with subsequent reduction in ductility. 316/316L is non magnetic, but can become mildly magnetic after heavy cold working. Annealing is required to rectify this problem, as well as optimizing corrosion resistance.

Stocked Sizes	- - -	Rounds Hexagon Square	4.76 mm – 450 mm Ø 7.94mm – 63.5mm A/F 6.35mm – 50mm A/F
Bar Finishes	-	Peeled, Turned & Polished, Cold Drawn & Centreless Ground	

Related Specifications	316 S/S		316L S/S		
Germany	W. Nr 1.4401 X5CrNiMo17 12 2	1	W. Nr 1.4404 X2CrNiMo17 12 2		
Japan	JIS G4303 SUS 316	J	JIS G4303 SuS 316L		
United Kingdom	BS 970 Pt 3 1991 316S31/316S33		BS 970 Pt 3 1991	316S11/316S13	
	BS 970 1955 EN58J				
USA	ASTM A276-98b 316	1	ASTM A276-98b 3	316L	
	SAE 30316	9	SAE 30316L		
	AISI 316	/	AISI 316L		
	UNS31600		UNS31603		
Chemical Composition					
	316 S/S		316L S/S		
Carbon	0.07% Max	(0.03% Max		
Silicon	1.00% Max		1.00% Max		
Manganese	2.00% Max		2.00% Max		
Nickel	10.00 - 14.00%		10.00 - 14.00%		
Chromium	16.00 - 18.00%		16.00 – 18.00%		
Molybdenum	2.00 - 3.00%		2.00 - 3.00%		
Phosphorous	0.045% Max	(0.045% Max		
Sulphur	0.030% Max	(0.030% Max		
Annealed Typical Med	hanical Properties (For Ref Only)	Cold Drawn	1	Other	
Tensile Strength Mpa		680		590	
0.20% Proof Stress (Yie	eld) Mpa	500		280	
Elongation on %		42		55	
Hardness Brinell HB		195		155	

Annealing

Heat uniformly to 1020-1100 Deg C. Hold until temperature is uniform throughout section. Soak as required (as a guide 30 minutes per 25mm of section) Quench in water to optimize corrosion resistance. Please consult your heat treater for best results

431 MARTENSITIC STAINLESS STEEL

431 is a high chromium- low nickel high hardenability martensitic stainless steel which exhibits high strength and good corrosion resistance. It is generally supplied hardened and tempered to 850-1000 Mpa UTS (Condition T). 431 is capable of being through hardened up to 44 HRC, as well as the ability to be nitride with surface hardness up to 65 HRC. Note that nitriding does reduce the corrosion resistance of this grade and should be considered carefully when choosing this process.

Typical uses include pump shafts, propeller shafts, studs, valve parts, fasteners etc.

Stocked Sizes	-	Rounds	6.35 mm – 230 mm Ø
Bar Finishes	-	Peeled, Turned 8	& Polished, Cold Drawn & Centreless Ground

Related Specifications							
Germany	W. Nr 1.4057 X200	W. Nr 1.4057 X20CrNi17 2					
Japan	JIS G4303 SUS 431	-					
United Kingdom	BS 970 Pt 3 1991 4	131529					
USA	ASTM A276-98b 4	ASTM A276-98b 431					
	SAE 51431	SAE 51431					
	AISI 431						
	UNS43100						
Chemical Composition							
	Min. %		Max %				
Carbon	0.12		0.20				
Silicon	0		1.00				
Manganese	0		1.00				
Nickel	1.25		2.50				
Chromium	15.00		17.00				
Phosphorous	0		0.04				
Sulphur	0		0.03				
Typical Mechanical Prop	erties	Annealed	Q&T Cond T				
Tensile Strength Mpa		Annealea	850-1000				
0.20% Proof Stress (Yield) Mpa			635 Min				
Elongation on %			11				
Hardness Brinell HB		277 Max	248-302				
		2// 1910	240-302				
Annealing							
Full annealing of this gra	de is not possible, as 431 har	dens even during a slow cool	ing cycle. It is recommended that y				

consult with a heat treatment company should you wish to anneal this material. Process annealing is performed at 620-660 deg C and then air cooled.

HARDNESS CONVERSION CHART

Brinell	Diamond		Rockwell Scale		Approx. Te	ensile Strength	Comparison (G	uide Only)
	Pyramid Scale	"C" Scale	"B" Scale	"A" Scale	Мра	Kg/mm2	Tons Per Sq	1000lb per
	HV10 HV30				N/mm2		Inch	Sq Inch
116	122		67		401	42	26	58
121	127		70		432	44	28	63
126	132		72.5		448	46	29	65
131	137		75		455	47	29.5	66
137	143		77		463	48	30	67
143	150		80		479	49	31	69
149	156		82		494	51	32	72
156	163		84.2		525	54	34	76
163	171		86		540	55	35	78
170	178		88.5		556	57	36	81
179	188		91		602	62	39	88
187	196		93		632	65	41	92
197	212		96		664	68	43	97
207	218		97		695	71	45	101
212	222		98		710	73	46	103
217	228				741	76	48	107
223	234	20.8		60.7	756	77	49	110
229	241	22		61.6	772	79	50	112
235	247	23		62	787	81	51	114
241	255	24.3		62.6	818	84	53	118
248	261	25.2		34	849	87	55	123
255	269	26.6		63.6	865	89	56	125
262	275	27.5		64	895	91	58	130
269	284	29		64.6	911	93	59	132
277	292	29.8		65.2	942	96	61	136
285	300	30.9		65.7	973	99	63	141
293	308	32		66.2	988	101	64	143
302	318	33		66.8	1019	104	66	147
311	327	34		67.5	1050	107	68	152
321	337	35		68	1096	111	71	159
331	349	36.7		68.8	1127	114	73	163
341	359	37.7		69.2	1158	118	75	168
352	370	38.8		69.8	1189	121	77	172
363	381	39.9		70.3	1235	126	80	172
375	395	41.3		71	1266	129	82	183
388	408	42.4	1	71.5	1312	134	85	190
401	408	43.7		72.5	1359	134	88	190
415	437	44.8		73	1335	145	92	206
429	452	46		73.5	1467	145	95	212
444	470	47.5		73.5	1513	150	98	212
461	497	49.5		75.5	1515	160	101	226
401	517	50.7		76.3	1621	165	101	235
495	532	51.9		76.9	1668	105	105	241
514	572	54.4	1	78.2	1729	176	103	250
534	609	56.1		78.2	1807	170	112	262
555	630	57.1		79.6	1884	192	122	273
578	670	58.9		80.6	1961	200	122	273
601	698	60		80.0	2039	200	132	295
627	710	60.5		81.5	2033	200	132	233
630	725	61		81.3				
030	723	61.7		82.2				
	760	62.5		82.6				
	780	63.3		82.0				
		64		83.4				
	800	04		03.4			l	

Vulcan provides this information in good faith. We believe the information provided is accurate and reliable, however no warranty of accuracy, completeness or reliability is given. Nor will any responsibility be taken for errors or omissions.

TOLERANCE TABLES

Most Common Steel Supply Tolerances

ISO h Tolerance (ISO 286-2) Diameter (mm) h6 h7 h8 h9 h10 h11 h12 Up to & Incl 3mm -0.006/+0 -0.010/+0 -0.014/+0 -0.025/+0 -0.040/+0 -0.060/+0 -0.100/+0 3 < 6mm -0.008/+0 -0.012/+0 -0.018/+0 -0.030/+0 -0.048/+0 -0.075/+0 -0.120/+0 6 < 10mm -0.009/+0 -0.015/+0 -0.022/+0 -0.036/+0 -0.058/+0 -0.090/+0 -0.150/+0 10 < 18mm -0.011/+0 -0.018/+0 -0.027/+0 -0.043/+0 -0.070/+0 -0.110/+0 -0.180/+018 < 30mm -0.013/+0 -0.021/+0 -0.033/+0 -0.052/+0 -0.084/+0 -0.130/+0 -0.210/+0 30 < 50mm -0.016/+0 -0.025/+0 -0.039/+0 -0.062/+0 -0.100/+0 -0.160/+0 -0.250/+0 50 < 80mm -0.019/+0 -0.030/+0 -0.046/+0 -0.074/+0 -0.120/+0 -0.190/+0 -0.300/+0 -0.022/+0 80 < 120mm -0.035/+0-0.054/+0-0.087/+0 -0.140/+0-0.220/+0-0.350/+0120 < 180mm -0.025/+0 -0.040/+0 -0.063/+0 -0.100/+0 -0.160/+0 -0.250/+0 -0.400/+0 180 < 250mm -0.029/+0 -0.046/+0 -0.072/+0 -0.115/+0 -0.185/+0 -0.290/+0 -0.460/+0 250 < 315mm -0.032/+0 -0.052/+0 -0.081/+0 -0.130/+0 -0.210/+0 -0.320/+0 -0.52/+0

ISO K Tolerance (ISO 286-2)

	· ·	/					
Diameter (mm)	К6	K7	K8	К9	K10	K11	K12
Up to & Incl 3mm	+0.006/-0	+0.010/-0	+0.014/-0	+0.025/-0	+0.040/-0	+0.060/-0	+0.100/-0
3 < 6mm	+0.009/+0.001	+0.013/+0.001	+0.018/-0	+0.030/-0	+0.048/-0	+0.075/-0	+0.120/-0
6 < 10mm	+0.010/+0.001	+0.016/+0.001	+0.022/-0	+0.036/-0	+0.058/-0	+0.090/-0	+0.150/-0
10 < 18mm	+0.012/+0.001	+0.023/+0.002	+0.027/-0	+0.043/-0	+0.070/-0	+0.110/-0	+0.180/-0
18 < 30mm	+0.015/+0.002	+0.027/+0.002	+0.033/-0	+0.052/-0	+0.084/-0	+0.130/-0	+0.210/-0
30 < 50mm	+0.018/+0.002	+0.032/+0.002	+0.039/-0	+0.062/-0	+0.100/-0	+0.160/-0	+0.250/-0
50 < 80mm	+0.021/+0.002	+0.038/+0.003	+0.046/-0	+0.074/-0	+0.120/-0	+0.190/-0	+0.300/-0
80 < 120mm	+0.025/+0.003	+0.043/+0.003	+0.054/-0	+0.087/-0	+0.140/-0	+0.220/-0	+0.350/-0
120 < 180mm	+0.028/+0.003	+0.050/+0.004	+0.063/-0	+0.100/-0	+0.160/-0	+0.250/-0	+0.400/-0
180 < 250mm	+0.033/+0.004	+0.050/+0.004	+0.072/-0	+0.115/-0	+0.185/-0	+0.290/-0	+0.460/-0
250 < 315mm	+0.036/+0.004	+0.056/+0.004	+0.081/-0	+0.130/-0	+0.210/-0	+0.320/-0	+0.520/-0

Other Tolerances

ISO j Tolerance (ISO 286-2)					
Diameter (mm)	j5	j6	j7		
Up to & Incl 3mm		+0.004/-0.002	+0.006/-0.004		
3 < 6mm	+0.003/-0.002	+0.006/-0.002	+0.008/-0.004		
6 < 10mm	+0.004/-0.002	+0.007/-0.002	+0.010/-0.005		
10 < 18mm	+0.005/-0.003	+0.008/-0.002	+0.012/-0.006		
18 < 30mm	+0.005/-0.004	+0.009/-0.004	+0.013/-0.008		
30 < 50mm	+0.006/-0.005	+0.011/-0.005	+0.015/-0.010		
50 < 80mm	+0.006/-0.007	+0.012/-0.007	+0.018/-0.012		
80 < 120mm	+0.006/-0.009	+0.013/-0.009	+0.020/-0.015		
120 < 180mm	+0.007/-0.011	+0.014/-0.011	+0.022/-0.018		
180 < 250mm	+0.007/-0.013	+0.016/-0.013	+0.025/-0.021		
250 < 315mm	+0.007/-0.016				